

MECHANICAL DATA Dimensions in mm (inches)

TO-66 METAL PACKAGE (TO213AA)

Underside View

Pin 1 = Gate Pin 2 = Source Case = Drain

N-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS

V _{DSS}	200V
I _{D(cont)}	13A
R _{DS(on)}	0.18Ω

FEATURES

- HERMETICALLY SEALED TO-66 METAL PACKAGE
- SIMPLE DRIVE REQUIREMENTS
- SCREENING OPTIONS AVAILABLE

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V _{GS}	Gate – Source Voltage	±20V		
I _D	Continuous Drain Current @ T _{case} = 25°C	13A		
I _D	Continuous Drain Current @ T _{case} = 100°C 8A			
I _{DM}	Pulsed Drain Current	50A		
PD	Power Dissipation @ T _{case} = 25°C	70W		
	Linear Derating Factor	0.56W/°C		
T _J , T _{stg}	Operating and Storage Temperature Range	–55 to 150°C		
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case	1.8°C/W max.		
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction to Ambient	50°C/W max.		

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: <u>sales@semelab.co.uk</u> Website: <u>http://www.semelab.co.uk</u>

IRFJ240

IRFJ240

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS	•						
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 250μA	200			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			1 40		V/°C	
ΔT_{J}	Breakdown Voltage	I _D = 1mA			1.42		V/ C	
R _{DS(on)}	Static Drain – Source On–State Resistance	V _{GS} = 10V	I _D = 7A*		0.14	0.18	Ω	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2		4	V	
9 _{fs}	Forward Transconductance	$V_{DS} \ge I_D \times R_{DS}$	_(on) I _D = 7A*	6	9		2(Ω)	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 0.8BV_{DSS}$ T _{.1} = 125°C			250 1000	μA	
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V	5			100	nA	
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$				-100		
000	DYNAMIC CHARACTERISTICS							
C _{iss}	Input Capacitance	$V_{GS} = 0$			1275			
C _{oss}	Output Capacitance	$V_{DS} = 25V$		500		pF		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz			160		-	
Qg	Total Gate Charge	1011	1 101		43	60		
Q _{gs}	Gate – Source Charge	$V_{GS} = 10V \qquad I_D = 16A \qquad -$ $V_{DS} = 0.8BV_{DSS} \qquad -$		16		nC		
Q _{gd}	Gate – Drain ("Miller") Charge			27				
t _{d(on)}	Turn–On Delay Time				16	30		
t _r	Rise Time		$V_{DD} = 75V$		27	60		
t _{d(off)}	Turn–Off Delay Time	$I_D = 7A$ $Z_0 = 4.7\Omega$			40	80	ns	
t _f	Fall Time				31	60	-	
	SOURCE - DRAIN DIODE CHARAC	TERISTICS						
I _S	Continuous Source Current					13	_	
I _{SM}	Pulse Source Current					50	A	
V _{SD}	Diode Forward Voltage	$I_{S} = 13A$ $V_{GS} = 0$	$T_J = 25^{\circ}C$			2	V	
t _{rr}	Reverse Recovery Time	I _F = 13A	T _J = 25°C			650	ns	
Q _{rr}	Reverse Recovery Charge	d _i / d _t ≤ 100A/µs	s V _{DD} ≤50V			4.1	μC	
	PACKAGE CHARACTERISTICS	1						
L _D	Internal Drain Inductance (f	rom 6mm down drain le		5.0		nH		
L _S	Internal Source Inductance (from 6mm d	own source lead to cer		12.5				

* Pulse width \leq 300µs; Duty Cycle \leq 2%

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.